FACULTY OF SCIENCE
Subject : Mathematics
Paper – IV : Elementary Number Theory
Time : 3 Hours
Max. Marks: 80

Note : Answer all questions from Part–A and Part–B. Each question carries 4 marks in Part–A and 12 marks in Part – B.

PART – A (8 x 4 = 32 Marks)
(Short Answer Type)

1. Use recursion to find the gcd of 18, 30, 60, 75, 132.
2. If \(f_n \) denotes the nth Fermat number, show that \(641/ f_5 \).
3. Find the digital roots of square numbers.
4. Solve the linear system
 \[x \equiv 1 \pmod{3}, \quad x \equiv 2 \pmod{4}, \quad x \equiv 3 \pmod{5} \]
 using Chinese Remainder theorem.
5. Find the remainder when \(24^{1947} \) is divided by 17.
6. Compute \(\phi(8), \phi(81), \phi(15625) \) where \(\phi \) is Euler’s Phi function.
7. Verify that 2 is a primitive root modulo 9.
8. Solve the quadratic congruence \(3x^2 - 4x + 7 \equiv 0 \pmod{3} \).

PART – B (4 x 12 = 48 Marks)
(Essay Answer Type)

9. (a) Solve the linear Diophantine equation
 \[1076x + 2076y = 3076 \]
 by Euler’s method.
 OR
(b) Show that LDE \(ax + by = c \) is solvable if and only if \(d/c \) where \(d = (a, b) \). If \(x_0, y_0 \) is a particular solution of LDE then all its solutions are given by
 \[x = x_0 + \frac{b}{d}t \]
 and \[y = y_0 - \frac{a}{d}t \]
 where \(t \) is an arbitrary integer.

10. (a) Using Pollard Rho method, factor the integer 3893.
 OR
(b) (i) Using the method of elimination, solve the linear system
 \[2x + 3y \equiv 4 \pmod{13} \]
 \[3x + 4y \equiv 5 \pmod{13} \]
 (ii) Prove that digital root of the product of twin primes, other than 3 and 5 is 8.
11 (a) (i) State and prove Euler's theorem.
 (ii) Deduce Fermat's Little theorem from Euler's theorem.

 OR

(b) (i) If \(n \) is a positive integer, show that \(\sum_{d|n} \phi(d) = n \).

(ii) Verify that \(M_{11} \) is a composite number and determine if \(M_{19} \) is a prime where \(M_p \) denotes Mersenne prime.

12 (a) (i) Show that \(\alpha = 3 \) is a primitive root modulo 5 and \(5^2 \). Also prove that \(\alpha = 5 \) is a primitive root modulo 7 and \(\alpha + p = 5 + 7 = 12 \) is a primitive root modulo \(7^2 \).

(ii) Solve the congruence \(3x^2 - 4x + 7 \equiv 0 \pmod{13} \).

 OR

(b) (i) State and prove Law of Quadratic reciprocity.

(ii) Evaluate \((2 \mid 13) \) using Gauss Lemma.