PART - A (8 x 4 = 32 Marks)
(Short Answer Type)

1. If \(f_1 \) and \(f_2 \) are linearly independent functions on an interval \(I \) then prove that \(f_1 + f_2 \) and \(f_1 - f_2 \) are also linearly independent on \(I \).

2. If \(\phi_1, \phi_2, ..., \phi_n \) are \(n \) linearly independent solutions and \(\phi \) is any solution of the \(n \)th order equation \(L(x(t)) - x^{(n)}(t) + b_1(t)x^{(n-1)}(t) + ... + b_n(t)x(t) = 0, t \in I \), then prove that there exists \(n \) constants \(c_1, c_2, ..., c_n \) such that \(\phi = c_1\phi_1 + ... + c_n\phi_n, t \in I \).

3. Write general \(n \)th order equation \(x^{(n)} = g(t, x, x', ..., x^{(n-1)}), t \in I \), into a system of first order \(n \) equations.

4. If \(\phi \) is a fundamental matrix for the system \(x' = A(t)x \) and if \(C \) is a constant non-singular matrix then prove that \(\phi C \) is also a fundamental matrix for above system.

5. Show that the function \(f(t, x) = x^2 + \cos^2 t \) satisfies Lipschitz condition in the region \(R : \{(t, x) : 0 \leq t \leq a, |x| \leq b\} \).

6. Define contraction mapping and also prove that every contraction mapping has unique fixed point.

7. Define equicontinuous and uniformly bounded of a family of function \(\{f_n(t)\} \) defined on \(I \) and also state Ascoli's Lemma.

8. If \(v, w \in C^1([t_0, t_0 + h], R) \) are lower and upper solutions of IVP \(x' = f(t, x), x(t_0) = x_0 \) and if \(f \) satisfies the inequality \(f(t, x) - f(t, y) \leq L(x-y) \) for \(x \geq y \) then prove that \(v(t_0) \leq w(t_0) \) implies \(v(t) \leq w(t) \) on \(I = [t_0, t_0 + h] \).

PART - B (4 x 12 = 48 Marks)
(Essay Answer Type)

9. a) State and prove Abel's formula for \(n \)th order linear homogeneous differential equation \(L(x)(t) = x^{(n)}(t) + b_1(t)x^{(n-1)}(t) + ... + b_n(t)x(t) = 0, t \in I \), where \(b_1, b_2, ..., b_n \) are continuous functions defined on an interval \(I \).

b) Solve \(x'' - 7x' = (3 - 36t)e^{4t} \) using the method of undetermined coefficients.
10 a) If $A(t)$ is an $n \times n$ matrix continuous on I and if matrix Φ satisfies $X' = A(t)X$, $t \in I$ then prove that $\det \Phi$ satisfies the first order equation $(\det \Phi)' = (t \times A)(\det \Phi)$.

OR

b) Determine the fundamental matrix for the system $x' = Ax$, where

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

11 a) State and prove Picard's theorem for existence and uniqueness of solution of IVP $x' = f(t, x), x(t_0) = x_0$.

OR

b) Prove that IVP $x' = f(t, x), x(t_0) = x_0$ has unique solution on $[t_0, t_0 + h]$ using contraction principle if $f(t, x)$ is continuous on the strip $t_0 \leq t \leq t_0 + h$, $|x| < \infty$ and f satisfies Lipschitz condition with Lipschitz constant $K > 0$.

12 a) If f in IVP $x' = f(t, x), x(t_0) = x_0$, is non-increasing in x, then prove that the iterates $V_n(t)$ given by $V_{n+1} = f(t, V_n), V_{n+1}(t_0) = x_0$, and the unique solution $x(t)$ of above IVP satisfy the inequality $V_0(t) \leq V_1(t) \leq \ldots \leq x(t) \leq \ldots \leq V_1(t) \leq V_0(t)$, $t \in I$ provided $V_2(t) \geq V_0(t)$ and also the sequence $\{V_{2n}(t)\}, \{V_{2n+1}(t)\}$ converge uniformly to $\rho(t)$, $r(t)$ and $\rho(t) \leq x(t) \leq r(t)$, $t \in I$.

OR

b) Prove that IVP $x' = f(t, x), x(t_0) = x_0$ has unique solution on the strip $S = \{(t, x) ; t_0 \leq t \leq t_0 + h, |x| < \infty\}$ if f is continuous and bounded on S using Ascoli's lemma.