Note: Answer all questions from Part-A and Part-B. Each question carries 4 marks in Part-A and 12 marks in Part-B.

PART - A (8 x 4 = 32 Marks)
(Short Answer Type)

1. Define a finite measure space. If \(A \in \mathcal{B}, B \in \mathcal{B} \) and \(A \subset B \) then show that \(\mu A \leq \mu B \).

2. Let \(f \) be an extended real valued function defined on \(x \). Then prove that
 \[\{ x : f(x) \leq \alpha \} \in \mathcal{B} \text{ for each } \alpha \text{ if and only if} \]
 \[\{ x : f(x) > \alpha \} \in \mathcal{B} \text{ for each } \alpha \]

3. Define a signed measure on a measurable space \((X, \mathcal{B})\). Prove that union of countable collection of positive sets is positive.

4. State and prove Hahn decomposition theorem.

5. If \(A \in \mathcal{A} \) and if \(\{A_n\} \) is any sequence of sets in \(\mathcal{A} \) such that \(A = \bigcup_{n=1}^{\infty} A_n \). Then show that
 \[\mu A \leq \sum_{n=1}^{\infty} \mu A_n \, \text{.} \]

6. Show that the set function \(\mu \) is an outer measure.

7. Let \(B \) be a \(\mu \)-measurable set with \(\mu B < \infty \). Then prove that \(\mu B = \mu^* B \).

8. Define an inner measure \(\mu^* \) induced by a measure \(\mu \) on an algebra \(\mathcal{A} \) of subsets of \(x \).
 Also prove that if \(E \in \mathcal{A} \) then \(\mu^* E = \mu E \).

PART - B (4 x 12 = 48 Marks)
(Essay Answer Type)

9. a) i) If \(E_1 \subset E_2 \), \(\mu E_1 < \infty \) and \(E_1 \supset E_{n+1} \), then show that
 \[\mu \left(\bigcap_{t=1}^{\infty} E_t \right) = \lim_{n \to \infty} \mu E_n \, . \]
 ii) State and prove Lebesgue convergence theorem.

 OR

 b) i) State and prove Fatou's Lemma.
 ii) If \(f \) and \(g \) are non-negative measurable functions and \(a \) and \(b \) non-negative constants, then show that
 \[\int [af + bg] = a \int f + b \int g \, . \]
 Further show that \(\int f \geq 0 \) holds with equality only if \(f = 0 \) a.e.

10. a) Let \(E \) be a measurable set such that \(0 < \mu E < \infty \). Then prove that there is a positive set \(A \) contained in \(E \) with \(\nu A > 0 \).

 OR

 b) State and prove Radon-Nikodym theorem.
11 a) Show that the class \mathcal{B} of μ^*-measurable sets is a σ-algebra. If μ^* is restricted to \mathcal{B}, then prove that μ^* is a complete measure on \mathcal{B}.

OR

b) State and prove Fubini theorem.

12 a) Let E and F be disjoint sets. Then show that $\mu_\ast E + \mu_\ast F \leq \mu_\ast (E \cup F) \leq \mu_\ast E + \mu_\ast F$.

OR

b) Let $\{A_i\}$ be a disjoint sequence of sets in \mathcal{A}. Then show that $\mu_\ast \left(\bigcup_{i=1}^{\infty} A_i \right) \leq \sum_{i=1}^{\infty} \mu_\ast (E \cap A_i)$.