FACULTY OF SCIENCE
M.Sc. III – Semester Examination, January 2018
Subject: Mathematics
Paper – III (A)
Discrete Mathematics

Time: 3 Hours Max. Marks: 80

Note: Answer all questions from Part-A and Part-B.
Each question carries 4 marks in Part-A and 12 marks in Part-B.

PART – A (8x4 = 32 Marks)
[Short Answer Type]

1. Let L be a lattice. Then for every a and b in L,
 a) \(a \lor b = b \) if and only if \(a \leq b \),
 b) \(a \land b = a \) if and only if \(a \leq b \),
 c) \(a \land b = a \) if and only if \(a \lor b = b \).

2. Show that the lattices pictured in the following figure are non-distributive.

 ![Lattices Diagram]

3. Show that if \(n \) is a positive integer and \(p^2/n \), where \(p \) is a prime number, then prove that
 \(D_n \) is not a Boolean algebra.

4. Show that in a Boolean algebra, for any \(a \) and \(b \),
 \((a \land b) \lor (a \land b') = a \).

5. If a graph \(G \) has more than two vertices of odd degree, then prove that there can be no
 Euler path in \(G \).

6. Let the number of edges of \(G \) be \(m \). Then prove that \(G \) has a Hamiltonian circuit if
 \(m \geq \frac{1}{2} (n^2 - 3n + 6) \) (here \(n \) is the number of vertices).

7. Let \((T, v_0) \) be a rooted tree on a set \(A \). Then prove that
 a) \(T \) is irreflexive
 b) \(T \) is asymmetric
 c) If \((a, b) \in T \) and \((b, c) \in T \), then \((a, c) \notin T \), for all \(a, b, \) and \(c \) in \(A \).

8. Prove that a tree with \(n \) vertices has \(n - 1 \) edges.
PART – B (4x12 = 48 Marks)
[Essay Answer Type]

9 a) If \(s_1 = \{x_1, x_2, \ldots, x_n\} \) and \(s_2 = \{y_1, y_2, \ldots, y_n\} \) are any two finite sets with \(n \) elements, then prove that the lattices \((p(s_1), \subseteq) \) and \((p(s_2), \subseteq) \) are isomorphic.

OR

b) Let \(L \) be a lattice. Then \(L \) holds the following:
 1) Idempotent properties
 2) Commutative properties
 3) Associative properties
 4) Absorption properties.

10 a) Show that in a Boolean algebra for any \(a, b, \) and \(c \):
 \[
 (a \land b \land c) \lor (b \land c) = b \land c.
 \]

OR

b) Let \(n = p_1 p_2 \ldots p_k \) where the \(p_i \) are distinct primes. Then prove that \(D_n \) is a Boolean algebra.

11 a) What is the total number of edges in \(K_n \), the complete graph on \(n \) vertices? Justify your answer.

OR

b) Draw the complete graph on seven vertices.

12 a) Let \((T, v_0)\) be a rooted tree. Then prove the following:
 i) There are no cycles in \(T \)
 ii) \(v_0 \) is the only root of \(T \)
 iii) Each vertex in \(T \), other than \(v_0 \), has in-degree one, and \(v_0 \) has in-degree zero.

OR

b) If \((T, v_0)\) is a rooted tree and \(v \in T \), then prove that \(T(v) \) is also a rooted tree with root \(v \).