FACULTY OF SCIENCE
M. Sc. I – Semester (CBCS / Non-CBCS) Examination, December 2013
Subject: Physics and Applied Electronics

Paper – I: Mathematical Physics

Time: 3 Hours Max. Marks: 80

Note: Answer all questions from Part-A and Part-B. Each question carries 4 marks in Part-A and 12 marks in Part - B.

PART - A (8 x 4 = 32 Marks)

(Short Answer Type)

1. Prove the recurrence relation
 \[n P_n = (2n-1) x P_{n-1} - (n-1) P_{n-2} \]
 for Legendre's polynomials.

2. Define gamma function. Show that
 \[\Gamma \left(\frac{1}{2} \right) = \sqrt{\pi} \]

3. Prove the recurrence relation
 \[H_n(x) = 2n H_{n-1}(x) \]
 for Hermite polynomials.

4. Obtain Rodrigues formula for Hermite polynomial.

5. Show that the Fourier transform of \(f(at) = \frac{1}{a} g \left(\frac{w}{a} \right) \)
 Where \(g(w) \) is the Fourier transform of \(f(t) \).

6. Find the Laplace transform of \(t \sin at \).

7. Show that every square matrix can be expressed as the sum of a Hermitian and
 Skew-Hermitian matrix.

8. Explain the inner product of two tensors.

PART - B (4 x 12 = 48 Marks)

(Essay Answer Type)

5. (a) Obtain the power series solution of Legendre's differential equation and show that
 \[P_n(x) = \frac{1}{2} (5x^2 - 3x) \]

 (b) Obtain the polynomial solution of Bessel's differential equation and prove that
 \(J_n(x) = n J_{n+1}(x) \).

10. (a) Set up the wave equation for the vibrations of a rectangular membrane and find its
 solution.

 OR

 (b) Show that the Hermite polynomials are generated by the function \(e^{2x^2} \) and hence
 prove that
 \[H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}) \]

11. (a) What is Laplace and inverse Laplace transform of a function \(f(t) \). State and prove the
 convolution theorem for Laplace transform.

 OR

 (b) Find the Fourier transform of
 \((i) f(x) = Ne^{-\alpha x^2} \) \(N \) and \(\alpha \) are constants \((ii) e^{3t} \)

12. (a) What are Christoffel's symbols of First and Second kind? Establish a relation between
 them.

 OR

 (b) What is the characteristic equation of a matrix? Find the eigen values and eigen vectors
 of the matrix.

 \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 1 & 2 & 3 \\
 2 & 6 & 4
 \end{bmatrix}
 \]
