Code No. 6076/CBCS

FACULTY OF SCIENCE

M.Sc. I - Semester (CBCS) Examination, December 2016

Subject: Physics & Applied Electronics

Paper – II
Classical Mechanics

Time: 3 Hours

Max.Marks: 80

Note: Answer all questions from Part - A and Part - B.

Each question carries 4 marks in Part-A and 12 marks in Part-B.

PART – A (8x4 = 32 Marks) [Short Answer Type]

- 1 Explain the Torque-free motion of a rigid body.
- 2 Find out the rotational kinetic energy of a rigid body.
- 3 Explain virtual displacement and virtual work.
- 4 Obtain equation of motion for a simple pendulum using Lagrange's equation.
- 5 Define Hamiltonian function.
- 6 What are cyclic coordinates? Mention their advantages.
- 7 What do you understand by stable and unstable equilibria?
- 8 Derive Hamiltonian formulation of relativistic mechanics.

PART – B (4x12 = 48 Marks) [Essay Answer Type]

9 a) Obtain the Euler's equations of motion for a rigid body.

OR

- b) State clearly the Lorentz transformation equations. Obtain Lorentz transformations in Minkowski space.
- 10 a) Explain velocity dependent potentials and dissipation function. Obtain Lagrangian for a charged particle in an EM field.

OR

- b) State Hamilton's principle and derive Lagrange's equations from Hamilton's principle.
- 11 a) Define Canonical transformation and get transformation equations for the four generating functions.

OR

- b) Derive an expression for the Hamilton's equation of motion.
- 12 a) Discuss the eigen value equation for small oscillations. How will you obtain the eigen values from this equation.

OR

b) Define normal coordinates and normal modes and obtain eigen vectors for a linear triatomic molecule.
